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Abstract

This paper discusses the calculation of sensitivities, or derivatives, for op-

timization problems involving systems governed by di�erential equations and

other state relations. The subject is examined from the point of view of nonlin-

ear programming, beginning with the analytical structure of the �rst and second

derivatives associated with such problems and the relation of these derivatives

to implicit di�erentiation and equality constrained optimization. We also out-

line an error analysis of the analytical formulae and compare the results with

similar results for �nite-di�erence estimates of derivatives. We then attend to

an investigation of the nature of the adjoint method and the adjoint equations

and their relation to directions of steepest descent. We illustrate the points dis-

cussed with an optimization problem in which the variables are the coe�cients

in a di�erential operator.
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1 Introduction

This paper discusses the calculation of sensitivities, or derivatives, for optimiza-

tion problems governed by ODE, PDE, and other state equations. The context

for this discussion is the general nonlinear programming problem

minimize F (a) = f(a; u(a))

subject to CE(a; u(a)) = 0

CI(a; u(a)) � 0;

(1)

with the distinguishing feature that u(a) is the solution of some set of equations,

h(a; u(a)) = 0: (2)

For instance, (2) might represent the solution of the boundary-value problem

�(Ka(x)u
0(x))0 = q(x); x 2 [0; 1]

u(0) = u(1) = 0
(3)

where the coe�cient Ka(x) is given, say, by

Ka(x) =

nX
i=1

ai�i(x)

for some �xed set of functions �1; � � � ; �n.
While our discussion will focus on the case where the equations de�ning

u are di�erential equations, other de�ning relations are possible. Problems of

the form (1){(2) can appear in discrete event simulation. Another example is

the sensitivity of eigenvalues and eigenvectors. For instance, if A = A(a) is a

smooth, n� n symmetric matrix-valued function of a, the system

Av � �v = 0

v
T
v � 1 = 0

de�nes an eigenvalue-eigendirection pair u = (�; v). The pair (�; v) is a smooth

function of a when � is a simple eigenvalue, and one can apply the formulae we

discuss here to compute the related sensitivities.

The equation (2) typically describes the physical state of the problem. Ex-

amples of optimization problems governed by state relations abound in inverse

problems, parameter estimation, remote sensing, optimal design, and optimal

control. We will refer to the variable a as the model parameters and to u(a) as

the state associated with a. The governing equation (2) will be called the state

equation.

We will examine the calculation of the derivatives associated with the prob-

lem (1). We will henceforth ignore the constraints CE and CI in (1) and consider

the ostensibly unconstrained problem

minimize F (a) = f(a; u(a)) (4)
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and study the derivatives of F and u with respect to the variable a, since the

derivatives of CE and CI with respect to a are similar to those of F . This

simpli�cation helps us focus on the salient feature of u(a): its nature as the

solution of (2).

Our discussion of the calculation of sensitivities is motivated primarily by

an interest in applying nonlinear programming algorithms to (1). The most

generally e�ective optimization algorithms for problems such as these are quasi-

Newton methods [8, 11], which require derivatives of the the objective function

F and the constraints. Sensitivities are also useful in their own right to study

the dependence of the state, objective, or constraints on the parameters a. As

we shall see, the governing equation (2) imparts a great deal of structure to the

calculation of derivatives.

The goal of this paper is to interpret the language that one encounters in the

literature on calculating sensitivities for di�erential equations in more familiar

terms, and, in particular, to show the connections to classical ideas in nonlinear

programming. Because we have in mind the optimization of systems governed

by di�erential equations, we will frame our discussion in the general terms of

functional analysis.

The main theme of this paper is the systematic approach to computing

derivatives based on implicit di�erentiation, and the signi�cance of these deriva-

tives for optimization. Among the particular points we will discuss are the

following:

� A careful derivation of the general formulae for the �rst and second deriva-

tives of F , including the in�nite-dimensional case.

� The connection between the formulae for derivatives and equality con-

strained optimization.

� A comparison of numerical error estimates for sensitivity calculations via

analytical formulae and by �nite-di�erences.

� The distinction between the derivative and directions of steepest descent.

� The adjoint approach, and the sense in which the \adjoint equations" are

adjoint.

� Some potential di�culties with the adjoint approach in the context of

optimization algorithms; in particular, how it may correspond to a non-

standard choice of scaling for some problems.

This exposition is intended partly as a primer for those unfamiliar with this

type of sensitivity calculation, and partly to make it easier for those whose

background lies in di�erential equations and those whose background lies in

nonlinear programming to discuss optimization problems of mutual interest.

The problem that is tacitly assumed as the model problem in this paper is

the case where u(a) is the solution of a di�erential equation and a represents
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either data in the problem|boundary values and source terms|or coe�cients

in the di�erential operator. Such problems make up a large proportion of those

encountered in control and parameter estimation. One topic that we will not

discuss is shape optimization, in which the domain on which the state is de�ned

varies, since this topic requires a great deal of machinery unlike that developed

here. However, many shape optimization problems can be reduced to problems

where the domain of de�nition for u is �xed and the variation in the shape is

represented by the variation of some boundary term or coe�cient, in which case

the approach discussed here applies. For examples, see [23].

We begin in x2 with the derivation of formulae for derivatives. The results in

this section are certainly not new, but the emphasis placed on the role of implicit

di�erentiation may be unfamiliar to some, and the presentation is detailed,

particularly the general derivation and interpretation of the reduced Hessian,

which relies on various technical identi�cations relegated to x11.
In x4 we present some error analysis for the calculation of sensitivities via

the analytical formulae and compare the results with similar results for �nite-

di�erence estimates of derivatives. This comparison helps explain the often

noted experience that analytical derivatives can be much more accurate than

�nite-di�erence approximations of sensitivities for systems governed by state

equations.

In x5, we discuss the relationship between the formulae for derivatives and

equality constrained optimization. Here we examine what is called the adjoint

state or costate in the di�erential equations and control literature and identify it

as a familiar Lagrange multiplier estimate in linear and nonlinear programming.

In x6 and x7 we discuss two approaches to sensitivity calculations. In prac-

tice, these approaches di�er in the way in which they organize the intermediate

calculations. The �rst is the sensitivity equations approach, which yields direc-

tional derivatives. The second is the adjoint equations approach, which is an

attempt to represent the derivative in a particular form and obtain a direction

of steepest descent by inspection. Our discussion is based on the distinction

between the derivative, which is a linear functional and as such lives in the dual

of the domain on which the problem is posed, and directions of steepest descent,

which are vectors in the domain that depend on a choice of norm. In IRn linear

functionals are simply row vectors that may be transposed to obtain a direction

of steepest descent. However, in the in�nite-dimensional case the situation is

more complicated. This we also discuss in x7, where we clarify what is \adjoint"
about the adjoint equations in the context of optimization, and how the adjoint

equations are related to a choice of norm, or scaling, de�ning a direction of

steepest descent.

We illustrate the discussion with a parameter estimation problem for an

elliptic operator in x3 and x8. This example su�ces to show how one computes

�rst and second derivatives and directions of steepest descent with respect to

di�erent norms. This example also shows how one can go wrong by an uncritical

use of the adjoint equations when they correspond to an unsuitable scaling for
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the problem.

2 Formulae for the derivatives

We begin with the analytical formulae for derivatives for problems governed by

state equations. These derivatives of the state and objective will follow from

implicit di�erentiation. These formulae are derived in detail in order to be

precise about the exact nature of the quantities that appear in the in�nite-

dimensional case, particularly in the expression for the derivative and Hessian

of the objective.

2.1 Notation

Given a Banach space X, we will denote its dual, the space of all bounded linear

functionals on X, by X
0. We will denote the duality pairing between T 2 X

0

and v 2 X by Tv = hT; vi, or by hT; viX if it is desirable to note the space

involved. If X is an inner product space, we will denote by (� ; �) or (� ; �)X the

inner product. Given two spaces X and Y , L(X;Y ) will denote the space of

bounded linear maps from X to Y . We will denote by IX the identity operator

on X.

The adjoint of a bounded linear operator A : X ! Y will be denoted by A�.

The adjoint A� : Y 0 ! X
0 is given by


A
�
y
0
; x
�
X
= hy0; AxiY ; y

0 2 Y
0
:

If X and Y are both Hilbert spaces, we will identify A� with the Hilbert space

adjoint A� : Y ! X, de�ned by

(x ; A�y)X = (Ax ; y)Y

for all x 2 X and y 2 Y .

Given a map G : X ! Y , we will sometimes denote its �rst and second

derivatives at x by DG(x) and D
2
G(x). In the proof of Theorem 2.2 we will

need to distinguish between the dependence of the derivatives DG and D2
G on

x and their action on vectors, which we will do by using brackets to delimit the

arguments of DG and D2
G as linear and bilinear maps: DG[v] = DG(x)[v] and

D
2
G[v1; v2] = D

2
G(x)[v1; v2].

2.2 The implicit function theorem and implicit di�erenti-

ation

The classical implicit function theorem [14] will su�ce for the calculation of

sensitivities in this paper:
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Theorem 2.1 (The Implicit Function Theorem). Let X, U , and V be

Banach spaces, and suppose h is a mapping from an open subset S of X � U

into V . Suppose (a0; u0) is a point in S such that

1. h(a0; u0) = 0,

2. h is continuously Fr�echet di�erentiable at (a0; u0), and

3. the partial Fr�echet derivative @h=@u(a0; u0) is boundedly invertible.

Then there exists a neighborhood � of a0 such that for each a 2 �, the equation

h(a; u) = 0 is solvable for u(a) 2 U . Moreover, the derivative of this solution

u(a) with respect to a is given by

du

da
= �

�
@h

@u

��1
@h

@a
: (5)

This formula for the Jacobian of u with respect to a is formally the result of

applying implicit di�erentiation to h(a; u(a)) = 0 to obtain

@h

@a
+
@h

@u

du

da
= 0

and thence (5).

2.3 The reduced derivative and the reduced Hessian

We will now apply the Implicit Function Theorem to derive formulae for the

derivative and Hessian of the objective function F in (1). We will assume that

u(a) is a locally unique solution to

h(a; u(a)) = 0; (6)

where h : (a; u) 2 X � U ! V , and that @h=@u is boundedly invertible. In

practice, the validity of these hypotheses typically follows from the existence

and uniqueness theory for the solution of the equation represented by (6). We

will also suppose that f and h are twice continuously Fr�echet di�erentiable on

a neighborhood of (a; u(a)).

Let

W = W (a; u) =

 
IX

du

da

!
=

0
@ IX

�
�
@h

@u

��1
@h

@a

1
A : (7)

We will call W the injection operator since it is a one-to-one mapping from X

into X � U and is invertible on its range; in �nite dimensions it is a full rank
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matrix. Its adjoint W� we will call the reduction operator. Observe that the

range of W lies in the nullspace of the Jacobian of h:

D(a;u)h W =

�
@h

@a
;

@h

@u

�0@ IX

�
�
@h

@u

��1
@h

@a

1
A = 0: (8)

Also de�ne � 2 V
0 by

� = �@f
@u

�
@h

@u

��1
(9)

and the Lagrangian `(a; u;�) by

`(a; u;�) = f(a; u) + h�; h(a; u)iV :

The Lagrangian is normally associated with constrained optimization, a point

to which we will return in x5, where we will discuss the nature of � as a Lagrange
multiplier estimate known as the costate or adjoint state.

Theorem 2.2. The derivative of F with respect to a is given by

F
0(a) =

@f

@a
� @f

@u

�
@h

@u

��1
@h

@a

���
(a;u(a))

; (10)

which may also be written as

F
0(a) = D(a;u)f W

���
(a;u(a))

= D(a;u)`(a; u;�) W

���
(a;u(a))

; (11)

where � = �(a; u(a)). The Hessian of F is given by

r2
aF (a) = W

�
�
r2
(a;u)`((a; u(a);�)

�
W

���
(a;u(a))

; (12)

where

r2
(a;u)`((a; u;�) = r2

(a;u)f(a; u) +
D
�; D

2
(a;u)h(a; u)

E
V
:

The term
D
�; D

2
(a;u)h

E
V
warrants explanation. Since D2

(a;u)h(a; u)[v1; v2] 2 V

for v1; v2 2 X � U , we have a real-valued bilinear form de�ned byD
�; r2

(a;u)h

E
V
[v1; v2] =

D
�; D

2
(a;u)h[v1; v2]

E
V
:

In the �nite-dimensional case, h = (h1; : : : ; hm)
T and we have the more recog-

nizable quantity D
�; D

2
(a;u)h

E
=

mX
i=1

�ir2
(a;u)hi:
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Theorem 2.2 reduces to familiar results from nonlinear programming in the

�nite-dimensional case. Assuming vectors in IRn to be column vectors, formula

(10) in Theorem 2.2 is an expression for a row vector (a linear functional on

IR
n). We transpose to obtain the gradient:

raF = W
Tr(a;u)`:

The objective F (a) = f(a; u(a)) is called the reduced objective; we obtain the

gradient raF of the reduced objective by applying the reduction matrixW T to

r(a;u)f . This is an instance of the reduced gradient in nonlinear programming

[11]. For this reason we will call dF=da the reduced derivative. Similarly, the

expression (12) corresponds to the reduced Hessian:

r2
aF = W

T r2
(a;u)` W:

The reduced gradient and the reduced Hessian and the origin of the terminology

\reduced" will be discussed further in x5.
The proof of Theorem 2.2 is a straightforward calculation based on implicit

di�erentiation. The one subtlety is the interpretation of some of the quantities

encountered along the way in order to arrive at (12), which looks like the familiar

formula for the reduced Hessian. For instance, r2
F = W

� r2
` W means that

r2
F [�1; �2] = r2

`[W�1;W�2] = r2
`[(�1;

du

da
�1); (�2;

du

da
�2)]

for all �1; �2 2 X. The identi�cation of this latter formula with (12) requires

the results in x11.
Proof. Computing the derivative of F , we see that

dF

da
(a) =

@f

@a
(a; u(a)) +

@f

@u
(a; u(a))

du

da
(a):

From this and the Implicit Function Theorem we obtain the following expression

for the derivative of F :

dF

da
(a) =

@f

@a
(a; u(a))� @f

@u
(a; u(a))

�
@h

@u
(a; u(a))

��1
@h

@a
(a; u(a));

which is (10). This can be rewritten as

dF

da
(a) = D(a;u)f W =

�
@f

@a
;

@f

@u

�
W ;

this and (8) yield (11).

We now turn our attention to the Hessian. We have

d
2
F

da2
=

d

da

�
fa(a; u(a)) + fu(a; u(a))

du

da

�
;
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in the sense that for all �1; �2 2 X,

d
2
F

da2
(a)[�1; �2] =

@
2
f

@a2
[�1; �2] +

@fa

@u
[
du

da
�1; �2]

+
@fu

@a
[�1;

du

da
�2] +

@
2
f

@u2
[
du

da
�1;

du

da
�2] + fu

d
2
u

da2
[�1; �2];

where the partial derivatives on the right-hand side are evaluated at (a; u(a)).

Here we are using the identi�cation of Hessians and bilinear maps in x11.2.
Using the interpretation of adjoints and bilinear forms in (54) in x11.4, we can
rewrite this as

d
2
F

da2
=

�
I
du

da

��0BB@
@
2
f

@a2

@
2
f

@u@a

@
2
f

@a@u

@
2
f

@u2

1
CCA
0
BB@ I

du

da

1
CCA +

@f

@u

d
2
u

da2

= W
�
�
r2
(a;u)f

�
W +

@f

@u

d
2
u

da2
: (13)

Meanwhile, implicit di�erentiation of

ha(a; u(a)) + hu(a; u(a))
du

da
(a) = 0

yields

d
2
u

da2
(a)[�1; �2] =

�
�
@h

@u

��1�
@
2
h

@a2
[�1; �2] +

@ha

@u
[
du

da
�1; �2] +

@hu

@a
[�1;

du

da
�2] +

@
2
h

@u2
[
du

da
�1;

du

da
�2]

�

for all �1; �2 2 X, so

@f

@u

d
2
u

da2
[�1; �2]

= �

�
@
2
h

@a2
[�1; �2] +

@ha

@u
[
du

da
�1; �2] +

@hu

@a
[�1;

du

da
�2] +

@
2
h

@u2
[
du

da
�1;

du

da
�2]

�

=
D
�; D

2
(a;u)h

E
V
[W�1;W�2]:

Since the right-hand side is a real-valued bilinear map, we may again apply (54)

in x11.4 to rewrite this as

@f

@u

d
2
u

da2
[�1; �2] =

�
W

�
D
�; D

2
(a;u)h

E
W

�
[�1; �2]: (14)

Combining (13) and (14) yields (12).
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3 Example

We will apply Theorem 2.2 to compute the derivative for a least-squares func-

tional associated with the following boundary value problem (BVP):

�r � (aru) + bi@xiu = q in 


u = 0 on @
:
(15)

We assume 
 is smoothly bounded. We use the summation convention through-

out; if an index occurs twice in a quantity then summation over that index is

implied: bi@xiu =
Pn

i=1 bi@xiu. For simplicity, we will assume that a = a(x) is

a scalar function. We will assume, too, that bi; q 2 L
1. Existence, uniqueness,

and regularity of solutions of this problem are discussed in [10, 17].

For simplicity, we have chosen a problem for which the state equation is

linear in the state and the boundary values are homogeneous. We will consider

the following nonlinear least-squares functional:

minimize F (a) = 1
2

Z



dx (u(x)� u�(x))
2
;

where u� 2 L
1. For instance, this objective might represent a parameter es-

timation problem, in which case the data u� would represent observations the

mismatch with which we wish to minimize. For a further discussion of the pa-

rameter estimation problem, see [3, 15, 26] and the references therein. This

functional could also arise in inverse design, where u� would represent some

desired state that we are attempting to achieve by varying a. Our goal here is

only to study how one computes derivatives, and we will ignore the question of

the existence of solutions to the minimization problem.

We will consider weak solutions to (15). For now we will let X = L
1(
),

though later we also consider the case where X = C
k;�, the space ofCk functions

with H�older continuous derivatives of order �. A suitable domain for a is

S = f a 2 X j a � a� > 0 g

for some positive a� 2 IR. The state u resides in U = H
1
0(
).

The weak interpretation of the BVP (15) means that the state constraint h

is a map

h : (a; u) 2 S � U ! h(a; u) 2 V =
�
H

1
0 (
)

�0
where for v 2 H

1
0 (
),

hh(a; u); viH1

0

=

Z



dx aru � rv +
Z



dx (bi@xiu)v �
Z



dx qv: (16)

The relation that de�nes u as a function of a is h(a; u(a)) = 0 in
�
H

1
0(
)

�0
.

9



We begin by computing the various quantities needed to apply Theorem 2.2.

Since h is an a�ne function in u, it is Fr�echet di�erentiable with respect to u.

Computing
@h

@u
� = lim

t!0

h(a; u+ t�)� h(a; u)

t

we �nd that
@h

@u
� = �r � (ar�) + bi@xi� (17)

in
�
H

1
0(
)

�0
, in the sense that�

@h

@u
�; v

�
H1

0

=

Z



dx ar� � rv +
Z



dx (bi@xi�)v:

In a similar way we obtain

@h

@a
� = �r � (�ru): (18)

Again, this equality is to be interpreted in the weak sense, as elements of�
H

1
0(
)

�0
.

Both (17) and (18) are expressions for a Jacobian-vector product|a direc-

tional derivative|rather than an explicit formula for the Jacobian. Directional

derivatives such as these are straightforward to compute.

Following the program in x2, we wish to apply implicit di�erentiation. First

we check that @h=@u is boundedly invertible, that is, that for all � 2
�
H

1
0(
)

�0
,

there exists a weak solution � 2 H
1
0(
) of the linearized boundary-value problem

@h

@u
� = �r � (ar�) + bi@xi� = � in 


� = 0 on @
;

and that the solution operator is bounded: there exists C, independent of �,

for which

k � kH1

0
(
) � C k � k(H1

0
(
))

0 :

In this case, the bounded invertibility of @h=@u follows from the existence theory

for elliptic equations in divergence form [10, 25].

Thus we may apply the Implicit Function Theorem to conclude that the

action of du=da|the Jacobian of u with respect to a|on a vector � is given by

the solution of the linearized BVP

L� = �r � (ar�) + bi@xi� = r � (�ru) in 


� = 0 on @
:
(19)

This corresponds to

@h

@u
� = �@h

@a
� or � = �@h

@u

�1
@h

@a
� =

du

da
�

10



in the notation of x2.
We now arrive at the action of the derivative F 0(a) on �. Let

� =
du

da
�;

� is de�ned by (19). We also have

@f

@a
= 0;

@f

@u
� =

Z



dx (u� u�)�:

Then by (10), we have

F
0(a)� =

Z



dx (u� u�)�: (20)

This yields the action of F 0(a) as a linear functional.

4 Analytical vs. �nite-di�erence approximation

of sensitivities

In this section we will draw some comparisons between the numerical accuracy

of the analytical derivatives of x2 and that of �nite-di�erence estimates. We will

consider the case where the state equation is linear in u:

h(a; u) = A(a)u� b = 0:

Given a = (a1; � � � ; an), we compute the matrix A(a) and solve the system

Au = b for u(a). For instance, such a linear system would arise in the solution

of a boundary-value problem such as (3) or (15). As we shall see, the error

estimates are guided by the fact that small changes in a will generally cause

only small changes in A, but, if the system is ill-conditioned, may cause much

larger changes in u.

Let's see what might happen if we apply �nite-di�erences to compute the

partial derivative

u
0(a) � @u

@ai

(a);

which is the ith column of the Jacobian of u with respect to a.

We will need the following basic estimate concerning the sensitivity of the

solution of linear systems to changes in the data, adapted from [13]. Let �(A)

denote the condition number of A.

Theorem 4.1. Suppose A 2 IR
n�n is nonsingular, b 2 IR

n, Ax = b, and

suppose (A +�A)y = b+�b, where
 A�1  k �A k < 1. Then

k x� y k
k x k � 1

1� k A�1 k k �A k

  A�1  k �b k
k x k +

 A�1  k �A k
!
: (21)
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Moreover, if k �A k � " k A k and k �b k � " k b k, there are perturbations for
which this bound is achieved to �rst order in ".

Of course, this bound is quite pessimistic for most perturbations. For in-

stance, a small perturbation of the form �A = �A is benign, and its e�ect does

not involve �(A). On the other hand, there are perturbations for which these

bounds are nearly obtained, which is of signi�cance to us. Moreover, if A has

a certain sparsity pattern|say, if A were associated with a �nite-di�erence or

�nite-element scheme|the perturbations �A that produce this sensitivity can

have the same sparsity pattern as A.

Let ei be the ith standard basis vector. We will assume that ai � 1, and

consider the e�ect of a �nite-di�erence step t � �ai, where t reects the absolute

size of the step and � the relative size. We will use � to denote machine epsilon,

the smallest oating-point number for which 1:0 + � = 1:0 (in oating-point).

Let u�(a) be the solution to the linear system A(a)u = b computed in exact

arithmetic, while u(a) will be the computed solution. Let e(a) = u(a) � u�(a)

be the associated error in the solution; we will assume that u is computed

as accurately as possible, so that k e(�) k = O(�(A)�). We will assume that

�(A)�� 1 so we can ignore the issue of numerical singularity.

As we saw in (5), the exact partial derivative u0�(a) is the solution of

A�(a)u
0
�(a) = �@A�

@ai
(a)u�(a); (22)

where the subscript '�' on the matrices denotes their representation in exact

arithmetic. The computed partial derivative u0(a) is the solution of

A(a)u0(a) = � @A

@ai
u(a); (23)

where the matrices are the oating-point representations of the exact matrices.

Comparing (22) and (23), we expect k �A k = k A(a) �A�(a) k � � k A�(a) k,
while the change in the right-hand side is

�b =

�
@A�

@ai
� @A

@ai

�
u�(a) +

@A

@ai
(u�(a) � u(a)) ;

from which we obtain

k �b k � �

 @A�

@ai

 k u�(a) k+
 @A�

@ai

 k u�(a)� u(a) k

� �(1 + �(A))

 @A�

@ai

 k u�(a) k :
We will now make the assumption that @A�

@ai

u�(a)

 �
 @A�@ai

 k u�(a) k (24)
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where here � means equivalence up to a factor that is small by comparison to

�(A). Under this hypothesis, combining the preceding estimates according to

(21) we see that computing u0 via the analytical formula satis�es a relative error

estimate of the form

k u0�(a) � u
0(a) k

k u0�(a) k
= O(�2(A)�): (25)

This suggests that computing u
0 via the analytical formula is comparable in

condition to solving least-squares problems. The factor �2(A) is not entirely

unexpected, since the calculation of u0 involves the solution of two linear sys-

tems, one for u and then another for u0.

Next consider the �nite-di�erence approximation and its two sources of error:

truncation error, due to the nonlinearity of the function being di�erentiated, and

condition error, due to inaccuracies in computing the function [11, 20]:

u(a+ tei) � u(a)

t
� u

0(a) =

�
u�(a+ tei)� u�(a)

t
� u

0(a)

�
+
e(a+ tei)� e(a)

t

= truncation error + condition error:

These are the Scylla and Charybdis of �nite-di�erence approximations, since

reducing one error tends to increase the other.

Under our hypotheses, the relative error due to condition error satis�es

k e(a+ tei)� e(a) k
t k u0�(a) k

� k e(a) k
t k u0�(a) k

� �(A)� k u�(a) k
t k u0�(a) k

� �(A)�

�
k A k =

 @A�@ai

 :
In practice, condition error is exacerbated by the use of iterative solvers in the

solution of the state equations, among other things. In particular, the stopping

criteria for iterative methods increases the condition error: consider solving a

discretized di�erential equation, where u would represent a discretized function.

The iterative approximation of u might be abandoned when the error in the

computed solution is believed to be comparable to the error inherent in the

level of the discretization [21], rather then when the relative residual of the

system being solved has been reduced to the order of oating-point precision,

thus increasing the condition error. However, here we will restrict our attention

to the errors solely attributable to the conditioning of the state equations.

Now consider the truncation error. In practice, analytical nonlinearity in u

maybe ampli�ed by numerical nonlinearity. For instance, numerical methods for

the solution of di�erential equations that contain switches such as upwinding will

contribute to the nonlinearity of the dependence of u on a. If we were applying

�nite-di�erences to estimating @F=@ai in (1) and avoiding the intermediate

state u, then we might also have to contend with adaptive meshing methods

that could change the state space as a function of a, another contribution to

truncation error. Again, we will restrict ourselves here to the e�ects of the

condition of the state equations.
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We have
A�(a+ tei)� A�(a)

t
=
@A�

@ai
(a) + E:

We may expect E to be small relative to A(a) if A depends in a straightfor-

ward manner on a. For instance, for the example (3), the discretized operator

constructed for a �nite-di�erence or �nite-element scheme would be a relatively

simple algebraic function of the coe�cient parameters a. For convenience, de�ne

~u0�(a) =
u�(a+ tei)� u�(a)

t
:

Then,

A�(a)~u
0
�(a) = �

�
@A�

@ai
(a) + E

�
u�(a+ tei): (26)

Meanwhile, consider �A = A�(a+tei)�A�(a); we expect k �A k � � k A�(a) k,
and the estimate (21) yields

k u�(a+ tei)� u�(a) k
k u�(a) k

� ��(A�(a))

1� ��(A�)
: (27)

Comparing (22) and (26) using the perturbation estimates (21) and (27), we

obtain
k ~u0�(a)� u

0
�(a) k

k u0�(a) k
= O(�2(A�(a))� ):

Combining the bounds on the condition and truncation errors, we obtain a

bound of the following form on the relative error in the �nite-di�erence estimate: u(a+ tei)� u(a)

t
� u

0(a)

 = k u0�(a) k � c1�
2(A(a))� +

c2�(A(a))�

�
:

Minimizing this in � gives a bound that is O(�3=2(A)�1=2). In view of our

hypothesis �(A)�� 1, this bound is much more pessimistic than the O(�2(A)�)

bound on the analytical derivative, itself no great shakes.

This analysis suggests �nite-di�erence approximations of derivatives associ-

ated with state equations are potentially much more sensitive to ill-conditioning

of the state equations than are derivatives calculated using the analytical for-

mulae. Whether or not one sees these pathologies depends on the condition of

the system being solved and the the perturbations of that system caused by

changes in the design variables a. And, as we have noted, the analysis sketched

here also ignores other sources of error that one encounters in practice that can

have an even more pronounced e�ect.

While in practice one can generally use �nite-di�erences successfully, there

remains the possibility for serious and unavoidable errors. One can construct

algorithms for unconstrained optimization problems using inexact gradients

[5, 22], but errors in the gradient can retard progress. Inaccurate derivatives are
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also a problem for sensitivity analysis in design (i.e., approximating the local

behavior of a function about a nominal design using a �rst-order Taylor's series

model). The potential for unpredictably inaccurate �nite-di�erence approxima-

tions of sensitivities is one motivation for examining analytical techniques for

computing derivatives.

5 Relationship of the sensitivity calculations to

equality constrained optimization

In x2.3 the Lagrangian

`(a; u;�) = f(a; u) + h�; h(a; u)i
was introduced with the multiplier � 2 V

0 de�ned by

� = �@f
@u

�
@h

@u

��1
: (28)

The motivation for introducing the Lagrangian comes from viewing the problem

(4) as an equivalent equality constrained problem:

minimize f(a; u)

subject to h(a; u) = 0;
(29)

where now both a and u are independent variables. From this point of view

the costate � serves as a Lagrange multiplier estimate [11, 24]. The assumption

that @h=@u is boundedly invertible allows us to invoke the Karush-Kuhn-Tucker

necessary conditions for a feasible point (a�; u�) to be a solution of (29) [7]: there

exists �� 2 V
0 for which

D(a;u)`(a�; u�;��) = D(a;u)f(a�; u�) +


��; D(a;u)h(a�; u�)

�
= 0:

In particular, the u-component of this system is

@f

@u
(a�; u�) + ��

@h

@u
(a�; u�) = 0:

From this and the de�nition of the costate (28) we see that � is an estimate of

the Lagrange multiplier associated with (29) that is consistent with the �rst-

order conditions at a locally constrained minimizer; i.e., � = �� at a minimizer.

A further discussion of the topic of multiplier estimates can be found in [11, 24].

The costate � corresponds to two common multiplier estimates in linear

and nonlinear programming, the shadow costs or reduced costs in the simplex

method [6] and the variable reduction multiplier estimate in nonlinear program-

ming [11]. To see this correspondence, �rst consider the Jacobian of the state

constraints in the �nite-dimensional case:�
@h

@a
;

@h

@u

�
� (N; B) :
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We are assuming that B = @h=@u is boundedly invertible, so we may take the

corresponding variables, the state variables u, as the basic variables (so-called

because the columns of B form a basis) and the model parameters a as the

nonbasic variables. Then �T = B
�Truf .

Now consider an iteration of the simplex method for the linear programming

problem
minimize c

T
x

subject to Ax = b

xL � x � xU :

One determines the components xN of x for which the inequality constraints

are binding, and forms an invertible block B from the columns of A correspond-

ing to the remaining components xB, and a vector cB from the corresponding

components of c. The shadow costs � are then de�ned to be � = �B�T
cB,

corresponding to the costate �.

In the case of nonlinear equality constrained programming,

minimize f(x)

subject to h(x) = 0;

the variable reduction multiplier estimate at x is computed by �rst �nding an

invertible block of columns B of the Jacobian of h. The multiplier estimate is

then � = B
�TrBf(x), where rBf(x) are the corresponding components of the

gradient, and again we see the correspondence with �.

The basic/nonbasic partition comes about by viewing the basic variables as

functions of the nonbasic variables. This reduces the problem to one in the

nonbasic variables alone; hence \variable reduction," \reduced gradient," and

\reduced Hessian." In the case of state constraints, we can treat the state u as

a function of a in (29) and eliminate u as an independent variable to obtain (4).

The costate multiplier is derived from a �xed partition of the variables in which

the state variables are always the basic variables and the model parameters a

are always the nonbasic variables. This is unlike the general case of linear and

nonlinear programming, in which the basic and nonbasic partition tends to vary.

In the nonlinear programming literature, this relation between equality con-

strained optimization and systems governed by state relations goes back at least

to [1] and work cited there, where it is discussed in the context of the general-

ized reduced gradients algorithm. Further consequences of the basic/nonbasic

partition of the state and model variables can be found in [18].

6 Sensitivity equations vs. adjoint equations

The order of calculation in (5) and (10), which we followed in x3, corresponds
to the approach to computing derivatives known as the sensitivity equations,

as well as computing sensitivities via �nite-di�erences or the forward mode of
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automatic di�erentiation [4]. The sensitivity equations approach is equivalent

to computing directional derivatives, and for this reason it is most applicable

when there is a small number of design parameters a.

The following example makes the idea clear. We modify our example (15),

�r � (Karu) + bi@xiu = q in 


u = 0 on @
;

so that the coe�cient in the leading term is parameterized as a function of a

set of model parameters a = (ai):

Ka =

nX
i=1

ai�i

for some (small) set of basis functions f�1; � � � ; �ng.
Formally, the sensitivity equations are derived by applying @=@ai to the

governing state equations and interchanging the order of di�erentiation to obtain

a relation de�ning @u=@ai:

�r � (@Ka

@ai
ru)�r � (Kar

@u

@ai
) + bi@xi

@u

@ai
= 0 in 


@u

@ai
= 0 on @


(30)

In terms of the discussion in xx2{3, this is nothing other than implicit di�eren-

tiation of h(a; u(a)) = 0 to obtain

@h

@ai
+
@h

@u

@u

@ai
= 0:

The sensitivity equations yield @u=@ai. If we wish to compute @F=@ai for some

functional F (a) = f(a; u(a)), we would use @u=@ai and the chain rule.

The sensitivity equations approach is attractive when one has a large number

of outputs but only a relatively small number of inputs. Suppose we wish to

compute sensitivities not just for a scalar output F , such as the objective in

(1), but a vector-valued function C(a) = c(a; u(a)), where c : IRn� IR
m ! IR

q,

such as the constraints in (1). The Jacobian of C is given by

dC

da
=

@c

@a
+
@c

@u

du

da
=

@c

@a
� @c

@u|{z}
q�m

�
@h

@u

��1
| {z }
m�m

@h

@a|{z}
m�n

: (31)

In the sensitivity equations approach, we tacitly compute du=da as an interme-

diate quantity, which requires n solutions of the sensitivity equation, no matter

the number of state variables u or outputs C. We compute an entire column of

the Jacobian of C each time we solve the sensitivity equations.
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On the other hand, if one has a relatively large number of inputs, the sen-

sitivity equations may not be practical, since every partial derivative requires

the solution of the sensitivity equations (i.e., the linearized state equation (30)).

This motivates the adjoint approach.

Transpose (31):

rC(a) = rac�
@h

@a

T

|{z}
n�m

�
@h

@u

��T
| {z }

m�m

ruc|{z}
m�q

; (32)

where rC denotes the transpose of the Jacobian. Then we see that this trans-

posed sequence of operations requires q solutions of the transposed linearized

state equations (q applications of (@h=@u)�T ). If q� n, this will be preferable

to the expense of the sensitivity equations approach. This ordering of operations

is the gist of the adjoint approach and the reverse mode of automatic di�eren-

tiation. In the case of IRn, the adjoint corresponds to the matrix transpose.

For an optimization problem, the adjoint equations approach|ordering the

calculation of derivatives as in (32)|is very attractive because one obtains the

gradient of the objective F , disirregardless of the number of model parameters

a, via a single application of the transposed solution operator (@h=@u)
�T

. More

generally, the e�ort required to compute sensitivities (say, of constraints) via

the adjoint approach grows with the number of outputs rather than with the

number of inputs.

The adjoint approach requires us to solve linear systems involving (@h=@u)
�T

.

If we have @h=@u at hand as a factored matrix this is not all that di�cult. How-

ever, @h=@u might not be readily available, say, if h(a; u(a)) = 0 is solved via

a nonlinear �xed-point iteration, or only the action of @h=@u is available be-

cause systems involving it are solved using an iterative scheme. In either case,

implementing (@h=@u)
�T

will require a fair bit of e�ort on the part of the user.

In the �nite-dimensional case the sensitivity equations and the adjoint ap-

proach are simply two di�erent ways of computing a product of matrices. De-

pending on the relative dimensions of the matrices, one or the other method

will be the more attractive. However, in the in�nite-dimensional case, the situ-

ation is more subtle. The complication arises in the switch from row vectors to

column vectors in the adjoint approach, i.e., the transposition of (31) to obtain

(32), the signi�cance of which we will now discuss in greater detail.

7 The representation of derivatives and the ad-

joint approach

We have seen that the attraction of the adjoint approach in �nite-dimensional

optimization is that one obtains the gradient of the objective for the cost of

solving a single linear system. Abstractly, the derivative F 0 is a linear functional
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on IR
n, while the gradient|the direction of steepest ascent|is a direction in

IR
n. We can pass between the two because of the identi�cation of IRn and its

dual, which does not necessarily generalize to the in�nite-dimensional case. The

derivative of F described in Theorem 2.2 resides in the dual X0, and we cannot

necessarily identify X
0 with X. We can connect the two spaces through the

notion of a descent direction|a direction p 2 X for which F
0(a)p < 0. At the

very least, such a direction is needed in order to apply a quasi-Newton method.

This leads us to a discussion of directions of steepest descent, the representation

of linear functionals, and the adjoint equations.

7.1 Directions of steepest descent and the action of the

Hessian

First recall the de�nition of a direction of steepest descent [12]. Suppose X is

a normed linear space with norm k � kX , and suppose F : X ! IR is Fr�echet

di�erentiable at a with Fr�echet derivative F 0(a) 2 X
0. Then the direction of

steepest descent with respect to the norm k � kX is a solution of the problem

minimize hF 0(a); pi
subject to k p kX � 1;

(33)

provided that a solution to this minimization problem exists. In the case of a

reexive Banach space, we are guaranteed at least one solution to (33) because

the unit ball B will be weakly sequentially compact [27]. Given any sequence

fpkg, k pk k � 1, for which

lim
k!1

hF 0(a); pki = L � inf
k p k�1

hF 0(a); pi ;

the weak sequential compactness means that we can �nd a subsequence con-

verging to a point p� for which hF 0(a); p�i = L.

Note that the direction of steepest descent depends on choice of norm|the

direction of steepest descent indicates the direction of greatest decrease in F

per unit distance, and the distance depends on the norm. The derivative is a

linear functional independent of choice of norm; the direction of steepest descent

depends on what one means by \steepest". A short step in the L2 norm may

not be a short step in the H1 norm, for instance, since an oscillatory function

may have a small L2 norm but a very large H1 norm. This aspect of the choice

of norm has practical bearing on the behavior of optimization algorithms. The

choice of norm|the scaling|can have a profound impact on the e�ciency of

optimization algorithms [8, 11].

A similar concern arises in interpreting the action of the Hessian H = r2
F .

The Hessian is an element of the space L(X;X0) (x11.2); accordingly, the

Hessian-vector product Hp is an element of X0, and again we ask how this

linear functional can be related to directions in X. As with the direction of
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steepest descent, a natural problem to pose in order to represent the Hessian-

vector product Hp as an element of X is:

minimize
q2X

hHp; qi
subject to k q k � 1:

(34)

In the case of a Hilbert space, we have X0 � X and L(X;X0) � L(X;X), so

there is an immediate interpretation of Hp as an element of X. In this case,

the solution q of (34) will point in the direction of �Hp.

The conjugate gradient algorithm illustrates the preceding discussion. Con-

sider the minimization of the quadratic form

q(x) =
1

2
x
T
Ax� x

T
b;

where A 2 IR
n�n is symmetric positive de�nite. Following [9], we can summa-

rize the conjugate gradient algorithm as follows:

x0 = 0; �r0 = b; k = 1

while �rk�1 6= 0 f
get dk such that dTk �rk�1 6= 0

xk = argmin
x2spanfp1;���;pk�1;dkg

q(x)

pk = xk � xk�1

�rk = �rk�1 � Apk

k = k + 1

g:

In the un-preconditioned conjugate gradient algorithm, at iteration k we min-

imize q over the span of the preceding search directions and the direction

dk = rk�1 � b � Axk�1 = �rq(xk), corresponding to the usual direction of

steepest descent with respect to the `2 Euclidean norm. On the other hand, if

we choose dk = M
�1
rk�1 for a symmetric positive de�nite M , we obtain the

preconditioned conjugate gradient algorithm. However, note thatM�1
rk�1 lies

along the direction of steepest descent with respect to the norm induced by

the inner product (x; y)M = x
T
My. Thus, computing a direction of steepest

descent with respect to an inner product other than the usual Euclidean inner

product leads to the preconditioned conjugate algorithm.

The connection between elements of the dual and directions in the domain

given by (33) and (34) also allows us to give a sensible interpretation of the

following aspect of the conjugate gradient algorithm. Suppose that A comes

from a �nite-di�erence discretization of

�r � (aru) = q on 


u = 0 on @
:
(35)
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The matrix A : IRn ! IR
n approximates an in�nite-dimensional operator Â

that is a map Â : H2
0 ! L

2 or Â : H1
0 ! (H1

0 )
0. In the �nite-dimensional case,

we look for xk in spanfp1; � � � ; pk�1; dkg, where dk = b�Axk. But this does not

make sense in terms of the underlying in�nite-dimensional problem: dk lies in

what should correspond to the range of Â, and the range and domain of Â are

not the same in this case. We can resolve this apparent inconsistency if we view

dk as the solution of a steepest descent problem (33).

7.2 The adjoint approach

The adjoint approach is an approach to computing a direction of steepest de-

scent. The point of view that we present here is that the adjoint approach is

a no-holds-barred attempt to express the action of the derivative F 0(a) in the

following form: For some function g = g(a),

hF 0(a); pi =
Z
gp: (36)

The goal of the adjoint approach is to �nd such a representation, if it exists.

One reason such a representation of the derivative is convenient is that it

suggests a direction of steepest descent and a choice of norm (scaling). If, for

instance, g(a) 2 X and X � L
2, then g(a) determines the direction of steepest

descent in X with respect to the L2 norm: the Cauchy-Schwarz inequality says

that the solution of

minimize
p2X

Z
gp

subject to k p kL2 � 1
(37)

is �g= k g kL2 . More importantly, as we will see in x8, a representation of the

derivative in the form (36) makes it possible to compute the direction of steepest

descent with respect to choices of norm other than the L2 norm.

Having described the goal of the adjoint approach, we will now give an

abstract description of its nature and then pass along to a concrete example.

At this point the adjoint equations make their appearance, and we can clarify

what is \adjoint" about them.

We start with (10) and play some notational tricks. Given � 2 X,

F
0(a)� =

�
@f

@a
+
@f

@u

du

da

�
�

=

�
1;

@f

@a
�

�
IR

+

�
@f

@u
;
du

da
�

�
U

=

�
@f

@a

�

1; �

�
X

+

�
du

da

�
@f

@u
; �

�
X

:

Since
du

da
= �

�
@h

@u

��1
@h

@a
;
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we have
du

da

�
@f

@u
= �@h

@a

��
@h

@u

���
@f

@u
: (38)

The adjoint equation, represented by @h
�
=@u, has now appeared. It is the

adjoint of the linearized state relation|adjoint in the sense described in x2.1|
and as such always exists.

The solution operator for the adjoint problem is a map

@h

@u

��

:
@f

@u
2 U

0 !
�
@h

@u

���
@f

@u
2 V

0
;

so

�@h
@a

�

:

�
@h

@u

���
@f

@u
2 V

0 7! �@h
@a

��
@h

@u

���
@f

@u
2 X

0
:

This yields the in�nite-dimensional analog of (32):

F
0(a)� =

*
@f

@a

�

1� @h

@a

��
@h

@u

���
@f

@u
; �

+
X

: (39)

One hopes that when the dust clears, F 0(a) has been revealed in the form (36).

The adjoint approach also leads to an alternative expression for the costate

�. From (9), � 2 V
0 satis�es�

�
@h

@u
; �

�
U

= �
�
@f

@u
; �

�
U

;

for all � 2 U . However,�
�
@h

@u
; �

�
U

=

�
�;

@h

@u
�

�
V

=

�
@h

@u

�

�; �

�
U

;

or

� = �
�
@h

@u

���
@f

@u
; (40)

allowing us to rewrite (39) as

F
0(a)� =

�
@f

@a

�

1 +
@h

@a

�

�; �

�
X

: (41)

Also note that the adjoint equations can tell us how to compute an action

of the Hessian of F on vectors. If we can identify p 2 X with elements of X 0

through a duality pairing such as (36), and if for all p 2 X we can identify

du

da

�

p = �@h
@a

��
@h

@u

���
p;

which is in X
0, as an element of X, then the adjoint equations tell us how to

compute W� according to (7), and the action of the Hessian of F via (12).
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8 An illustration of the adjoint approach

We will illustrate the adjoint approach using the example introduced in x3. We

begin by computing the adjoint equation and the other adjoint operators that

appear in (39). We then use these results to compute directions of steepest

descent and the action of the Hessian.

8.1 The adjoint equation and other adjoint operators

Recall that @h=@u maps v 2 H
1
0 to the linear functional in (H1

0)
0 de�ned by

Lv = �r � (arv) + bi@xiv in 


v = 0 on @
;
(42)

that is, (@h=@u)v 2 (H1
0 )
0 is de�ned by�

@h

@u
v; w

�
H1

0

=

Z



dx arw � rv +
Z



dx (bi@xiv)w:

for all w 2 H
1
0 .

The adjoint (@h=@u)� maps w 2 (H1
0 )
00 � H

1
0 to the linear functional in

(H1
0)
0 de�ned by

L
�
w � �r � (arw)� @xi (biw) in 


w = 0 on @
:
(43)

To see this adjointness, note that the de�nition of the adjoint and the reexive

identi�cation of (H1
0 )
00 and H1

0 means that�
@h

@u

�

w; v

�
H1

0

�
�
w;

@h

@u
v

�
(H1

0
)0

�
�
@h

@u
v; w

�
H1

0

= hLv; wiH1

0

:

Meanwhile, the standard weak interpretation of (43) means that for all w; v 2
H

1
0 , 


L
�
w; v

�
H1

0

=

Z



dx arw � rv + wbi@xiv = hLv; wiH1

0

:

Thus (43) de�nes (@h=@u)�.

The operator (@h=@u)�� is the solution operator for the boundary value

problem (43). Since (@h=@u)�1 is a map (H1
0 )
0 ! H

1
0 , its adjoint (@h=@u)

�� is

a map (H1
0 )
0 ! (H1

0 )
00 � H

1
0 , which is again consistent with the interpretation

of (43) as representing the weak formulation of a PDE.

We also need to compute (@h=@a)� as part of the adjoint calculation (39).

For � 2 L
1 we have

@h

@a
� = �r � (�ru) 2 (H1

0)
0
;
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in the sense that for v 2 H
1
0 we have�

@h

@a
�; v

�
H1

0

=

Z



dx �ru � rv:

We have ru � rv 2 (L1)0; then from�
v;

@h

@a
�

�
(H1

0
)0

=

�
@h

@a
�; v

�
H1

0

= hru � rv; �iL1 ;

we see that
@h

@a

�

v = ru � rv: (44)

Using (43) and (44) we can now compute

du

da

�

� = �@h
@a

��
@h

@u

���
�:

We �rst compute the solution w of

L
�
w � �r � (arw)� @xi (biw) = � in 


w = 0 on @

(45)

to obtain w = (@h=@u)
��

�, and then

�@h
@a

�

w = �ru � rw (46)

yields (du=da)��.

All these calculations and identi�cations (rather tediously) work with ad-

joints in the sense of the de�nition in x2.1. This sense of adjointness is not that
of an inner product space adjoint; the adjointness discussed for this example is

certainly not that of a Hilbert space adjoint, for instance. One could attempt

to interpret adjointness in this example in terms of the L2 inner product, but

such an interpretation would lead one to unbounded operators on L2 and signi�-

cant theoretical complications. The \adjoint" of the adjoint equations should be

taken to refer to the adjoint that maps between dual spaces, just as in the theory

of weak solutions of di�erential equations. Thus one avoids unbounded oper-

ators. For observations on very similar di�culties with adjoints of unbounded

operators to the solution of boundary value problems, see [16].

8.2 Directions of steepest descent

For

F (a) = f(a; u(a)) =
1

2

Z



dx (u� u�)
2
;
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we have
@f

@a
= 0;

@f

@u
� =

Z



dx (u� u�)�: (47)

Keep in mind that @f=@u = (u� u�) as a linear functional in the sense of (47).

From (40), (43), and (47), the costate � 2 (H1
0 )
00 � H

1
0 is the weak solution

of
L
�
� � �r � (ar�) � @xi (bi�) = �(u� u�) in 


� = 0 on @
:
(48)

The regularity of solutions for the BVP means that we may think of � as an ele-

ment of H1
0(
), but its nature as a Lagrange multiplier in

�
H

1
0 (
)

�00
is described

via the canonical duality pairing

h�; �i(H1

0
)0
= h�; �iH1

0

; � 2 (H1
0)
0

that makes H1
0 isomorphic to (H1

0)
00. Here again we encounter the issue of

representations of linear functionals.

From (41),

F
0(a)� =

�
@h

@a

�

�; �

�
L1

:

Applying (44), we see that if we de�ne

g(x) = r�(x) � ru(x) (49)

then we arrive at the representation of F 0(a) as

F
0(a)� =

Z



dx g�: (50)

This integral representation achieves our �rst goal in the adjoint approach. This

representation will allow us to compute the direction of steepest descent for a

variety of norms, as we will now discuss.

At this point the choice of domain X enters our deliberations. Suppose,

as we have heretofore, that a 2 X = L
1(
), and bi; q 2 L

1. Then we are

guaranteed in general only that u; � 2 H
1
0 , and so we can only be assured

that the representer g de�ned in (49) is in L
1. Thus �g does not immediately

determine an L
2 direction of steepest descent because we do not know that g

is, in fact, in L2. Without further hypotheses, we cannot simply take the result

of applying the adjoint approach as a direction of steepest descent.

However, given that g 2 L
1, we can compute the direction of steepest descent

in the L1 norm; it is

p(x) = �sign g(x):
Unfortunately, this is not a particularly meaningful direction of steepest descent,

and in the computational setting this is not particularly well-scaled. In IRn, the
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unit ball in the `1 norm contains points with `
2 norm

p
n, so the two norms

are quite dissimilar for large n.

One of the problems one can encounter with the adjoint approach has emerged.

Even if we can express the derivative in the form (36), the direction of steepest

descent suggested by this representation may not be acceptable because of the

regularity properties of the representer g.

What happens if we try to improve the regularity of g by restricting attention

to coe�cients a that are smoother than just L1? Well, if a 2 X = C
�(�
) and

bi; q 2 L
1, then u 2 C

1;�(�
), and � 2 H
1
0 , and so g 2 L

2. In this case,

p = �g= k g kL2 would be the direction of steepest descent with respect to the

L
2 norm. However, unless � 2 C

1;�(�
), the direction p may su�er from the aw

that p =2 X = C
�(�
).

It can happen that � =2 C
1;�(�
) because the regularity of solutions of the

adjoint problem (43) is slightly di�erent from those of the state equation or its

linearization, a situation not uncommon in the adjoint approach. In order to

guarantee � 2 C
1;�, we must require not only the hypothesis a 2 C

� but also

bi 2 C
�. This is because the di�erential operator associated with the adjoint

contains the weak derivatives @xi(biw), terms absent from the operator @h=@u.

Thus, in order to be assured that � 2 C
1;�(�
), we would need the additional

regularity assumptions bi 2 C
�(�
). If these data do not satisfy these conditions,

then the L2 direction of steepest descent de�ned by (49) is not appropriate.

Suppose it were the case that g 2 L
2 but g =2 C

� and we were to use p =

�g= k g kL2 in the method of steepest descent, say. If our current iterate ac were

inX = C
�(�
), then immediately we would produce an new iterate a+ = ac+�p

that is not inX. In the computational setting, we could see a marked qualitative

change appear in the step from ac to a+; possibly \roughness" (oscillations) or

features of large magnitude.

However, our di�culties go away if we compute a direction of steepest descent

with respect to a higher-order Sobolev norm, say, the H1 norm. We do this as

follows. We seek a solution to the problem

minimize hF 0(a); pi =
Z



dx gp

subject to k p kH1 � 1:

The Lagrangian for this problem is

`(p;�) =

Z



dx gp+
�

2

Z



dx
�
rp � rp+ p

2
�
;

and the �rst-order necessary condition (which for this convex problem is su�-

cient) is
d`

dp
(p;�)� =

Z



dx g� + �

Z



dx (rp � r� + p�) = 0
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for all � 2 H
1(
), with � � 0. But this condition is the same as saying that p

is the weak solution of the Neumann problem

�r � (rp) + p = �g=� in 


dp

dn
= 0 on @
;

where � > 0 is chosen so that k p kH1 = 1. Thus, in order to compute the

direction of steepest descent in the H1-norm, we �rst need to compute g as

in (49), and then solve this auxiliary Neumann problem. The regularity of

solutions of elliptic problems is such that the resulting direction p is not only

an element of H1, but also of C1;�(�
), which is what we wished.

For higher-order Sobolev norms, one would solve the weak form of an aux-

iliary problem involving a higher-order operator. In this way one can obtain

descent directions of ever increasing smoothness, the Sobolev norm acting as a

preconditioner. In the computational setting, this would be done using a dis-

crete Sobolev inner product as the weighting for the norm in the optimization

algorithm.

8.3 Computing the action of the Hessian

Next we will compute the action of the Hessian and discuss its representation.

From (12), r2
F = W

�
�
r2

`
�
W , meaning

r2
F (�1; �2) = r2

`(W�1;W�2) = r2
`((�1;

du

da
�1); (�2;

du

da
�2)):

We will see that to compute the action of the Hessian, we must solve two BVP,

one of the form (42) and the other of the form (43).

For i = 1; 2, let

�i =
du

da
�i:

We have

r2
f((�1; �1); (�2; �2)) =

Z



dx �1�2 =

�
du

da
�1;

du

da
�2

�
H1

0

=

�
du

da

�
du

da
�1; �2

�
L1

;

while

D
2
h((�1; �1); (�2; �2)) = �r � (�1r�2) �r � (�2r�1)

in (H1
0 )
0, and


�; D
2
h((�1; �1); (�2; �2))

�
(H1

0
)0

=

Z



dx �1r� � r�2+
Z



dx �2r� � r�1
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= h�r � (�1r�); �2iH1

0

+ hr� � r�1; �2iL1

=

�
�r � (�1r�); �

du

da
�2

�
H1

0

+ hr� � r�1; �2iL1

=

�
du

da

�

(�1r�); �2
�
L1

+ hr� � r�1; �2iL1 :

Then

r2
`((�1; �1); (�2; �2)) =

Z



dx �1�2 +

Z



dx �1r� � r�2 +
Z



dx �2r� � r�1;

or in terms of the various linear functionals,

r2
`((�1; �1); (�2; �2)) =

�
du

da

�
du

da
�1 +

du

da

�

(�1r�) +r� � rdu

da
�1; �2

�
L1

:

If we let

� =
du

da

�
du

da
�1 +

du

da

�

(�1r�) +r� � rdu

da
�1;

then we see that � 2 L
1 and



r2

F �1; �2

�
=

Z
��2; (51)

giving us an integral representation of the action of the Hessian on �1. As in the

case of the representation (50) of the derivative, the choice of domain X and

the smoothness of the other data in the problem will determine whether � 2 L
2

or is even more regular.

9 Further observations on the adjoint approach

and the representation of the derivative and

Hessian

A natural question to ask is when F
0(a) can be represented in the form (36).

Obviously (36) is natural for a problem posed on L
2, such as many control

problems, since then the Riesz Representation Theorem for Hilbert spaces tells

us that there exists g 2 L
2 for which hF 0(a); pi = (g ; p)L2 : However, many

problems, such as parameter estimation problems, are not usually posed a priori

on a Hilbert space such as L2|there are typically boundedness or regularity

constraints on the coe�cients in di�erential operators. So, how common should

we expect the representation (36) to be?

The following observation might make us hopeful that the derivative gener-

ally can be expressed in the form (36). Suppose the domain X, whatever its
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natural topology, is a subset of the Sobolev space Hk for some k � 0, and the

derivative F 0(a) is actually a continuous linear functional in the norm of Hk:

for some C > 0,

j hF 0(a); pi j � C k p kHk (52)

for all p 2 X. Using the Hahn-Banach Theorem we can extend F
0(a) to a

bounded linear functional on all of Hk. We may identify the dual of Hk with

the negative norm Sobolev space H�k [2]. This characterization of
�
H
k
�0
di�ers

from that given by the Riesz Representation Theorem in terms of the Hk inner

product: H�k is de�ned to be the completion of the space of functionals v on

H
k of the form

hv; piH�k =
Z
vp; p 2 H

k
; (53)

for some v 2 L
2. The completion is taken with respect to the norm

k v k�k = sup
k p k

Hk�1

j (v ; p)L2 j :

If (52) holds, then F
0(a) 2 H

�k, and since the functionals of the form (53)

are dense in H
�k, we might hope that we will be able to express F 0(a) in the

desired form (36), or at the very least approximate it by such simple functionals

for which it is trivial to compute a direction of steepest descent. Moreover,

functionals of the form (53) are also dense in the duals of other spaces of interest,

such as Ck.

Unfortunately, the following elementary proposition points out that our hope

for �nding a representation of F 0(a) of the form (36) and an associated L
2

direction of steepest descent is circumscribed. No cheating is allowed: If one

has a representation of F 0(a) of the form (36), and this representation is well-

behaved in the sense that the representer g(a) can be used to determine an L2

direction of steepest descent that behaves reasonably as a function of a, then

morally the problem can actually be posed on L2 to begin with.

Proposition 9.1. Let X and H be Banach spaces such that X � H. Let

S be a convex subset of X and denote by � the closure of S in H in the norm

on H.

Also suppose that F : S ! IR is continuously di�erentiable in the topology

of X and that for all a 2 S and � 2 X,

hF 0(a); �iX = hg(a); �iH ;

where g(a) 2 H
0 is bounded in norm as a function of a on subsets of X bounded

in the norm on H. Then F extends to a map F : �! IR continuous in H.

Proof. For b; c 2 B(0; R) \ S we have

F (b)� F (a) = hF 0(c); b� aiX = hg(c); b� aiH
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for some c 2 S on the line segment connecting a and b, so

j F (b)� F (a) j � k g(c) kH k b� a kH � KR k b� a kH
where KR depends only on R. This shows that F is continuous on S in the

topology of H, so we can extend F uniquely to a map F : � \ B(0; R) ! IR

continuous in the norm on H. Since R > 0 was arbitrary, the proposition

follows.

Suppose that we either express F 0(a) as a functional of the form (53), or

approximate it by such a functional (as the density of such functionals in many

dual spaces might lead us to try). Then Proposition 9.1 says that either F

extends to L2, or the representer v(a) cannot even be bounded in L
2 norm on

sets bounded in L
2 norm, much less be continuous. In the latter case, when

F does not extend to L
2, the representer produced by the adjoint approach

is not by itself a meaningful representation of sensitivities or a direction of

steepest descent. In nonlinear programming terms, the descent promised by

such a putative direction of descent is not meaningful since the function F is

extremely nonlinear with respect to the sense of distance. In the computational

setting, this means that the usual direction of steepest descent with respect to

the Euclidean norm, i.e., the negative gradient of the discretized problem, may

have less and less meaning as the discretization becomes �ner.

The conjugate gradient method applied to the BVP (35) in x7 manifests

this pathology. The in�nite-dimensional operator Â does not extend to L2, so

we should not expect a direction of descent computed with respect to the L2

norm to be useful. The un-preconditioned conjugate gradient algorithm uses

approximations of exactly these bad directions of descent and generally does

not work well. For a �ne discretization, the quadratic form is too nonlinear in

the `2 norm for the `2 direction of steepest descent to be a useful predictor of

the decrease we will see in that search direction.

10 Conclusion

One topic we have not discussed in this paper has been the practical details of the

implementation of sensitivity calculations for problem governed by di�erential

equations, particularly the adjoint approach. This is a large topic in its own

right, and there is a great deal of disagreement particularly over how the adjoint

approach should be implemented. One point of view is to derive the adjoint

equations in the in�nite-dimensional setting and then discretize them as seen

�t. At the other end of the spectrum is the approach that works purely with

the discretized problem, and computes the associated derivatives. Automatic

di�erentiation is the extreme of this point of view; not only the discretized state

equation but its solution scheme is di�erentiated. Intermediate to these points

of view is one that works with the elements of the discretized problems in ways
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that are analogous to how one approaches the in�nite-dimensional sensitivity

calculation.

Our overview has emphasized the origin of sensitivity calculations in im-

plicit di�erentiation, and the connection between the sensitivity formulae and

variable reduction methods in nonlinear programming. We have stressed the

distinction between the derivative and directions of steepest descent as the key

to understanding the object and limitations of the adjoint approach. We hope

this perspective on the calculation of sensitivities for problems governed by dif-

ferential equations and other state equations will make discussion easier between

nonlinear programmers and those interested in the application of optimization

to their speci�c problems.

The interpretation of the adjoint equations in terms of the Banach space

adjoint we have discussed is general. The example of the adjoint approach

given in this paper considered a problem involving weak solutions of the gov-

erning di�erential equation, but the ideas apply in the case of classical or strong

solutions.

It is not always possible to express the derivative in the form (36). This

sometimes occurs, for instance, with objectives F that involve traces of the state

u|restrictions of u to lower-dimensional surfaces|because the trace operation

makes @f=@u a distribution. This distribution shows up on the right-hand

side of the adjoint problem, and the solution of the adjoint problem may be a

distribution that is not a function in the usual sense. In such cases, computing

a direction of steepest descent with a norm other than that of L2, such as the

choice of a Sobolev norm discussed in x8.2, will produce a smoother representer

for F 0, which, if su�ciently regular, may serve as a direction of steepest descent.

Computationally, the appearance of a distribution on the right-hand side

of the adjoint problem corresponds, say, to taking a function de�ned on the

boundary of a computational grid and injecting it into the interior as a function

that is supported only near the boundary. Computing a direction of steepest

descent with respect to a Sobolev norm smoothes out this data.

Also note that applying the implicit function theorem to compute derivatives

for problems involving traces requires that we know that solutions of the state

equation are su�ciently smooth for the trace map to be continuous. An example

of a problem for which such trace theorems had to be derived as part of the

sensitivity analysis can be found in [19].

One could choose to view the question of norms and scaling that we have

discussed as a bogeyman from functional analysis and in�nite-dimensional op-

timization. However, if one is attempting to use approximate a truly in�nite-

dimensional optimization problem via discretization, then the issue of scaling

and the dependence of the direction of steepest descent on the choice of norm

will become manifest as the level of discretization increases, as our discussion in

connection with the conjugate gradient algorithm indicates. Even when consid-

ering the case where the design variables a truly reside in a �nite-dimensional

domain, one needs to be aware of the issue of scaling. Moreover, when im-
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plementing an adjoint approach in either case one will need to understand the

nature of the intermediate quantities.
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11 Appendix: Some results from operator the-

ory

Relegated to this appendix are some results on operators that are used in connec-

tion with the reduced Hessian in Theorem 2.2. These results are identi�cations

that allow us to make the general formula for the reduced Hessian look like the

familiar one in IRn.

Given Banach spaces Y; Z, we will denote by B(Y; Z) the space of bounded

bilinear maps from Y into Z. Then we have the following equivalences.

11.1 An isomorphism of the space of bilinear maps

There is a natural isomorphism between L(X;L(U; V )) and B(X � U; V ), the

space of bilinear maps from X � U into V . Given A 2 L(X;L(U; V )), we may

de�ne a bilinear map B(x; u) = hAx; ui. Conversely, given a bilinear map

B : X � U ! V , we can de�ne A 2 L(X;L(U; V )) via hAx; ui = B(x; u).

11.2 Second derivatives as bilinear maps

The derivative of a map � : Y ! Z is a map D� : y 7! D�(y) 2 L(Y; Z), so

its derivative, D2�, is a map D2� : y 7! D
2�(y) 2 L(Y; L(Y; Z)). Using the

identi�cation in x11.1, we may then canonically view D
2� as a bilinear map in

B(Y � Y; Z).

11.3 The adjoint of a bilinear form

A bilinear form B on IR
n � IR

m has the form B(x; u) = x
T
Bu = u

T
B
T
x for

some n � m matrix B. We may view B as mapping IRn to linear functionals

(row vectors) in (IRm)0 via B : x 7! x
T
B, and B

T as mapping IRn to linear

functionals in (IRn)0 via BT : u 7! u
T
B
T
:

The general analog is the following. Suppose that B1 : X � U ! IR and

B2 : U � X ! IR are bounded bilinear forms and that B1(x; u) = B2(u; x)
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for all x; u. Using the identi�cation of x11.1, we have B1 2 B(X � U; IR) �
L(X;L(U; IR)) = L(X;U 0). Likewise, we have B2 2 L(U;X0), and

hB1x; ui = hB2u; xi :

Then B
�
1 : U 00 ! X

0 and B
�
2 : X00 ! U

0. Since there is a natural embedding

U � U
00, we may view B

�
1 as a map B�

1 : U ! X
0. Likewise, we may view B

�
2

as a map B�
2 : X ! U

0, as desired.

11.4 Composition of linear maps and bilinear forms

Given a bilinear form B(x; u) = x
T
Bu = u

T
B
T
x on IRn � IR

m, then

B(A1x1; A2x2) = x
T
2A

T
2BA1x1 = A

T
2BA1(x1; x2)

= x
T
1A

T
1B

T
A2x2 = A

T
1B

T
A2(x2; x1)

where we are de�ning the bilinear forms AT2 BA1(x1; x2) and A
T
1 B

T
A2(x2; x1)

in the obvious way.

The general analog is derived similarly. Suppose that B : X � U ! IR is a

bilinear form, A1 : X1 ! X, and A2 : X2 ! X. Then using the interpretation

in x11.3 of B� : U ! X
0 we have

B(A1x1; A2x2) =
�
A
�
1 B

�
A2

�
(x2)(x1) =

�
A
�
2 BA1

�
(x1)(x2) (54)
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